Apr 14: Field extersins: simple 丰 algebraic

The quartic questio on HWR was challeging.
\$0. Reap
Let K be a fica
Let $f(x) \in \mathbb{K}[x]$ irreg poly
FACT $K[x] /(f)$ is a field and $K \rightarrow K[x](f)$ field extension and degree

If $K \subset L$ fickle extern and $\alpha \in L$, then $K(\alpha)$ as the smallest subbed containing both $K \geqslant \alpha$.

We say $K C L$ simple (punitive) if $J \alpha \in L$ with $L=K(\alpha)$

We say $K C L$ simple (pinitve)
if $\exists \alpha \in L$ with $L=k(\alpha)$
Consider

$$
Q \subset Q(\sqrt{2})
$$

$$
Q \subset Q(\sqrt{3})
$$

Also have $\theta(\sqrt{2}, \sqrt{3}) \subset \mathbb{C}$
means smallest sabfiul containity $\sqrt{2}, \sqrt{3}$
Ques: Is $Q(\sqrt{2}, \sqrt{3})$ simple ext of Q ?
Suggestion: $Q(\sqrt{2}+\sqrt{3})=Q 1 \sqrt{3} \sqrt{3})$ Certainly $\alpha=\sqrt{2}+\sqrt{3} \in Q(\sqrt{2}, \sqrt{3})$
Obrearation: $|Q(\sqrt{2}, \sqrt{3}): Q|=4$

$$
\begin{aligned}
& \alpha=\sqrt{2}+\sqrt{3} \\
& \alpha^{2}=2+2 \sqrt{6}+3=5+2 \sqrt{6}
\end{aligned}
$$

$\sim\left\{1, \alpha, \alpha^{2}\right\}$ lin. index.
because $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ are in. in lp

$$
\begin{aligned}
\alpha^{3} & =(\sqrt{2}+\sqrt{3})(5+2 \sqrt{6}) \\
& =5 \sqrt{2}+2 \sqrt{12}+5 \sqrt{3}+2 \sqrt{18} \\
& =5 \sqrt{2}+4 \sqrt{3}+5 \sqrt{3}+6 \sqrt{2} \\
& =11 \sqrt{2}+9 \sqrt{3}
\end{aligned}
$$

$M\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ ore lin. inkep
Is $\sqrt{2} \in \operatorname{Span}\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$

$$
\begin{aligned}
\frac{\alpha^{3}-9 \alpha}{2} & =\frac{(11 \sqrt{2}+9 \sqrt{3})-9(\sqrt{2}+\sqrt{2})}{2} \\
& =\sqrt{2}
\end{aligned}
$$

Similarly $\frac{\alpha^{3}-162}{-2}=\sqrt{3}$
Conclusion: Yes, it is simple.

$$
\begin{aligned}
& \text { Yes it is simple. } \\
& Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})
\end{aligned}
$$

Def Let $K C L$ be a find ext. Proposition Let $K C L$ foch ext.
We say $\alpha \in L$ is algebraic over K Let $\alpha \in L$ be algebraic over K.
if $J f(x) \in \mathbb{K}[x]$ suck thee

$$
f(2)=0 .
$$

Ex: $Q \subset \mathbb{C}$

- $\sqrt{2}, \sqrt{3} \in \mathbb{C}$ are algetbar over Q
- $i \in \mathbb{C}$ algebraic $1 Q$
- $e, \pi \in \mathbb{C}$ are nit algebaic/Q

Proof

$$
\mathbb{F}=\{f(x) \in k[x] \mid f(\alpha)=0\{c k[x]
$$

Claim: I is an ileal
True bl observation. ($\forall f \in I, g \in k C J)$
$f g \in I$
Know $k[x]$ is a principe l. ed al duran, i.e. every ileal JckC[x] is of the' for $J=(h)$ for $h \notin K C D]$

- Proposition Let $K C L$ ficl ext: Therbore \exists some $f(x) \in K[x]$

Let $\alpha \in L$ be algebroic over K.
Then there exists a unique monic irreduibe pilynonimal $f(x) \in K[x]$ with $f(\alpha)=0$.
Obsevaion: If α is a roit of $f(x)$, then α il abs root of $f(x) g(x)$ for ary $g \in k[x]$.
Proof

$$
I=\{f(x) \in \mathbb{P}[x] \mid f(\alpha)=0\{\cos t[x]
$$

Claim: I is an ideal
True ble obseration. ($\forall f \in I, g \in k \in J)$
Knaw $k[x]$ is a principal fged dorail i.e. every ilal Jck $[x]$ is of the for $J=(h)$ for $h+k C D$
such tuat

$$
I=(f)
$$

- $f \in I \Rightarrow f(a)=0$
- By clivicling by kading coett, car arsume f is ronic.
- Why is f irrechnible?

If not, $f=f_{1} \cdot f_{2}$

$$
\begin{aligned}
& O=f(\alpha)=f_{1}(\alpha) f_{2}(\alpha) \\
& \Rightarrow \alpha \text { i a not of eital } f_{1}, f_{2}
\end{aligned}
$$

Assome $f, b 1=0$
$I=(f) \subset\left(f_{1}\right) \subset I$

$$
\text { (f) } c\left(f_{1}\right) c\left(f_{1}\right) \Rightarrow t_{2} \text { is a scakr. }
$$

- Why is f unigar?

For any ater $g(x)$ with $g(2)=0$, then flg.
Ble fromic, has to be unigue.

- Proposition Let KCL foch ext. Let $\alpha \in L$ be algebraic over K. Then there exists a unique nonic irreduibe polpnonimal $f(x) \in K[x]$ with $f(\alpha)=0$.
We call $f(x)$ the minimal polnnoniad of α over K

Ex:

- $Q \subset \mathbb{C}, \sqrt{2}$
min poly $\sqrt{2}$ over $Q=x^{2}-2$
- $\mathbb{Q}(\sqrt{2}) \subset Q(\sqrt{2} \sqrt{3})$ min ply $\sqrt{3}$ over $Q(\sqrt{2})=x^{2}-3$
- What $\alpha, \sqrt{2}+\sqrt{3} \in Q(\sqrt{2}, \sqrt{3})$
- Min ply ot a over \mathbb{Q}

$$
\begin{aligned}
& \alpha=\sqrt{2}+\sqrt{3} \\
& \alpha^{2}=2+2 \sqrt{6}+3=5+2 \sqrt{6} \\
& \alpha^{3}=11 \sqrt{2}+9 \sqrt{3}
\end{aligned}
$$

know $\left\{1,2,2^{2}, 2^{3}\right\}$ lin. inked.
\Longrightarrow B cubic $f(x)$ wits $f(2)=0$

$$
\begin{aligned}
2^{4}= & \left(2^{2}\right)^{2}=(5+2 \sqrt{6})^{2}=25+4 \cdot 6 \\
& +20 \sqrt{6} \\
= & 49+20 \sqrt{6} \\
2^{4}-\frac{10 \alpha^{2}=49-50=-1}{4} & \alpha^{4}-10 \alpha^{2}+1=0 \\
& f(x)=x^{4}-10 x^{2}+1
\end{aligned}
$$

is the min pily of α over Q

Ques: What is min poly
of $\alpha=\sqrt{2}+\sqrt{3}$ over $Q(\sqrt{2})$?
$g(x)^{3}-9 x-2 \sqrt{2} \quad g(\alpha)=0$
$\alpha^{2}, \alpha, 1$ shark be lin dep over $Q(\sqrt{2})$

$$
\begin{aligned}
& \sqrt{2} \cdot 2=2+\sqrt{6} \\
& 2^{2}-2 \sqrt{2} \alpha-1=0 \\
& \Rightarrow f(x)=x^{2}-2 \sqrt{2} x-1
\end{aligned}
$$

min P P方
$\mid Q(\alpha|: \mathbb{Q}|=$ deg of min pily of a ore θ

1

$$
\begin{aligned}
& \alpha^{2}=2+2 \sqrt{6}+3=5+2 \sqrt{6} \\
& \alpha^{3}=11 \sqrt{2}+9 \sqrt{3}
\end{aligned}
$$

Know $\left\{1,2,2^{2}, 2^{3}\right\}$ lin. inhere.
\Longrightarrow \# cubic $f(x)$ isth $f(2)=0$

$$
\begin{aligned}
& \alpha^{4}=\left(\alpha^{2}\right)^{2}=(5+2 \sqrt{6})^{2}= \\
& 25+4 \cdot 6 \\
&+20 \sqrt{6} \\
& \alpha^{4}-20 \sqrt{6} \\
& \Rightarrow-10 \alpha^{2}=49-50=-1 \\
& \Rightarrow \alpha^{4}-10 \alpha^{2}+1=0
\end{aligned}
$$

$$
\Rightarrow f(x)=x^{4}-10 x^{2}+1
$$

is the min ply of α over Q

